Differential Privacy and Minimum-Variance Unbiased Estimation in Multi-Agent Control Systems
نویسندگان
چکیده
In a discrete-time linear multi-agent control system, where the agents are coupled via an environmental state, knowledge of the environmental state is desirable to control the agents locally. However, since the environmental state depends on the behavior of the agents, sharing it directly among these agents jeopardizes the privacy of the agents’ profiles, defined as the combination of the agents’ initial states and the sequence of local control inputs over time. A commonly used solution is to randomize the environmental state before sharing – this leads to a natural trade-off between the privacy of the agents’ profiles and the variance of estimating the environmental state. By treating the multi-agent system as a probabilistic model of the environmental state parametrized by the agents’ profiles, we show that when the agents’ profiles is ε-differentially private, there is a lower bound on the `1 induced norm of the covariance matrix of the minimum-variance unbiased estimator of the environmental state. This lower bound is achieved by a randomized mechanism that uses Laplace noise.
منابع مشابه
Output Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method
This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...
متن کاملState Estimate Schemes for Descriptor Systems with Multi-time Delayed Measurements
This paper deals with discrete-time stochastic descriptor (singular) systems with instantaneous and multi-time delayed measurements. The estimability condition of the descriptor systems involving delayed measurements is given. Using the measurements reorganization approach, the optimal Kalman lter and corresponding estimate error covariance are derived. Furthermore, an algorithm for the linear...
متن کاملESTIMATORS BASED ON FUZZY RANDOM VARIABLES AND THEIR MATHEMATICAL PROPERTIES
In statistical inference, the point estimation problem is very crucial and has a wide range of applications. When, we deal with some concepts such as random variables, the parameters of interest and estimates may be reported/observed as imprecise. Therefore, the theory of fuzzy sets plays an important role in formulating such situations. In this paper, we rst recall the crisp uniformly minimum ...
متن کاملEstimation Based on an Appropriate Choice of Loss Function
Some examples of absurd uniformly minimum variance unbiased estimators are discussed. Two reasons, argued in the literature, for having such estimators are lack of enough information in the available data and property of unbiasedness. In this paper, accepting both of these views, we show that an appropriate choice of loss function using a general concept of unbiasedness leads to risk unb...
متن کاملThe Baseline Approach to Agent Evaluation
Efficient, unbiased estimation of agent performance is essential for drawing statistically significant conclusions in multi-agent domains with high outcome variance. Näıve Monte Carlo estimation is often insufficient, as it can require a prohibitive number of samples, especially when evaluating slow-acting agents. Classical variance reduction techniques typically require careful encoding of dom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017